

Release Date: 11 August 2024 Version: A1.1

- ► CHIP SMD with IC
- ▶ 0808 (2020) IC 0.75t
- ► Red/Green/Blue

NOM67S14IC

AEC-Q100

AEC-Q102

FEATURES:

Package: CHIP EIA STD Package 6 Pins with Integrated IC

Output Current: 20mA/Channel

LED Voltage: 4.5~5.5V

Luminous Intensity (typ.): 280/850/150mcd*

Colour: Red/Green/Blue

Dominant Wavelength (typ.): 633/527/457nm

Viewing Angle: 120°

Materials:

Resin: Epoxy (Water Clear) Operating Temperature: -40~+85°C

Storage Temperature: -40~+85°C

- IC Feature: Serial data transmission signal by DATA CLK two lines. Supports sleep/wake-up mode. In sleep mode, the LED's current was lower than 5µA.
- Pixel: One pixel contains R, G, and B colour that each can achieve 256 level brightness grayscales, which forms 16,777,216 combination colours.
- **Soldering methods:** IR reflow soldering
- MSL Level: acc. to JEDEC Level 3
- Packing: 8mm tape with max.4000pcs/reel, ø180mm (7")

* in order of Red/Green/Blue

APPLICATIONS:

- Telecommunication
- Status Indicator
- Home Appliance
- **Decoration Lighting**
- Full Colour LED Strip
- **Gaming Device**

Support sleep/wake up mode. In sleep mode the LED's current was lower than 5µA

0808 IC Integrated

CHARACTERISTICS:

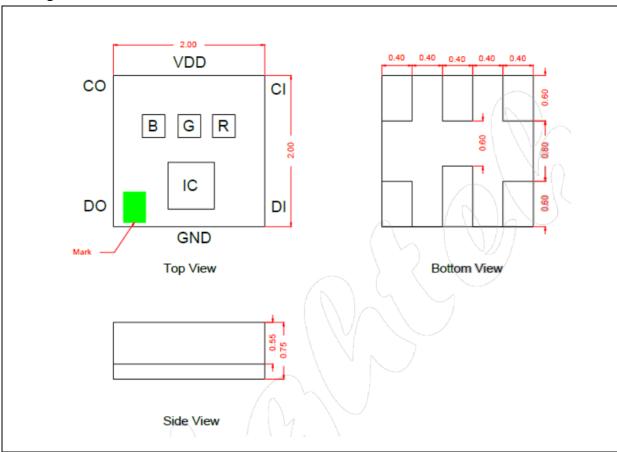
Absolute Maximum Characteristics (Ta=25°C)

Parameter	Symbol	Ratings	Unit
The Max. LED Output Current	Іомах	20/Channel	mA
IC Power Supply Voltage	V_{DD}	< 6.5	V
LED Voltage	V _{LED}	4.5~5.5	V
Power Dissipation	PD	< 400	mW
Rate of Data Signal	F _{CLK}	15	MHz
Operating Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T _{STG}	-40~+85	°C
Electrostatic Discharge (HBM)	ESD	6000	V
Soldering Temperature	T _{SD}	260 for 10s max.	°C

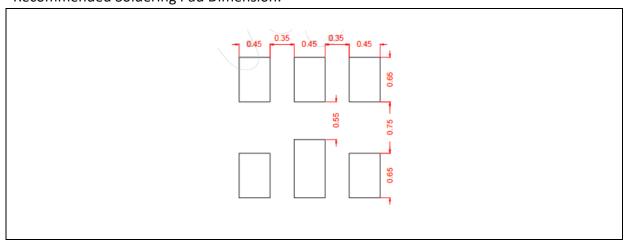
Electrical & Optical Characteristics (Ta=25°C, V_{DD}=5V)

Parameter		Cumbal		Values	Lloit	Test	
		Symbol	Min.	Тур.	Max.	Unit	Condition
LED Voltage		V _{LED}	4.5		5.5	V	
	R		220	280	350		
Luminous Intensity	G	lv	700	850	1050	mcd	V _{DD} =5V
	В		120	150	200		
	R		630		636		
Dominant Wavelength	G	$\lambda_{\sf d}$	524		529	nm	V _{DD} =5V
	В		455		460		
Viewing Angle		2θ _{1/2}		120		deg	V _{DD} =5V

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. $2\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ_d is derived from CIE chromaticity diagram and represents the single wavelength which defines the color of the device. Peak emission wavelength tolerance is ± 1 nm.

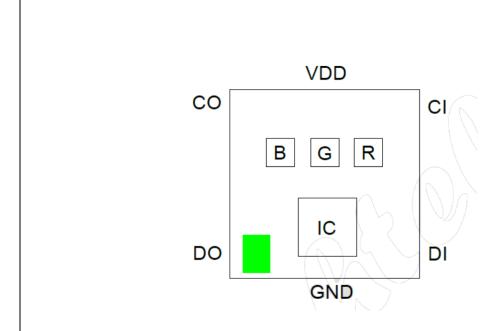

Electrical Characteristics (Ta=25°C, V_{DD}=5V)

Parameter	Symbol		Values	Unit	Test	
raiailletei	Зуппоот	Min.	Тур.	Max.	Ullit	Condition
Supply Voltage	V_{DD}	4.5	5.0	5.5	V	
Input High Voltage	V _{IH}	2.7		V _{DD} +0.4	V	
Input Low Voltage	VIL	-0.4		1.0	V	
Clock High Level Width	T _{CLKH}	30			ns	
Clock Low Level Width	T _{CLKL}	30			ns	
Data Setup Time	T _{SETUP}	10			ns	
Data Hold Time	T _{HOLD}	5			ns	
Working Current (IC)	I _{DD}			2	mA	I _{out} ="OFF"
Static Current	I _{Sleep}			5	μΑ	Sleep Mode


OUTLINE DIMENSION:

Package Dimension:

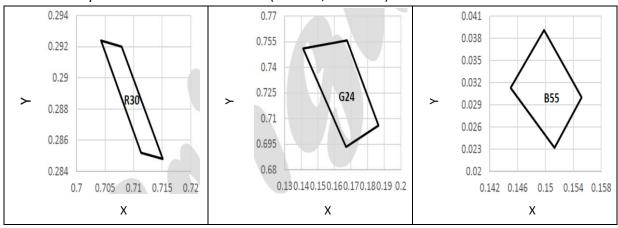
- 1. All dimensions are in millimetre (mm).
- 2. Tolerance ±0.1mm, unless otherwise noted.


Recommended Soldering Pad Dimension:

- 1. Dimensions are in millimetre (mm).
- 2. Tolerance ±0.1mm with angle tolerance ±0.5°.

PIN CONFIGURATION:

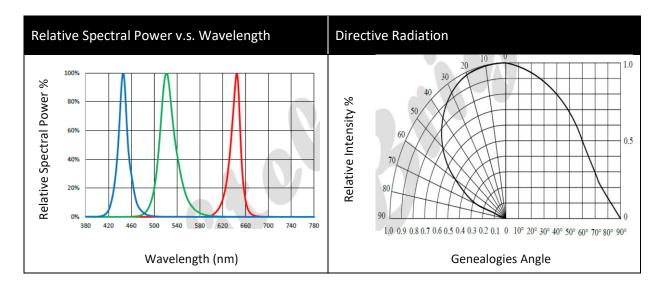
No.	Symbol	Function Description
1	СО	Clock Output
2	VDD	Supply Voltage
3	CI	Clock Input
4	DO	Data Output
5	GND	Ground
6	DI	Data Input

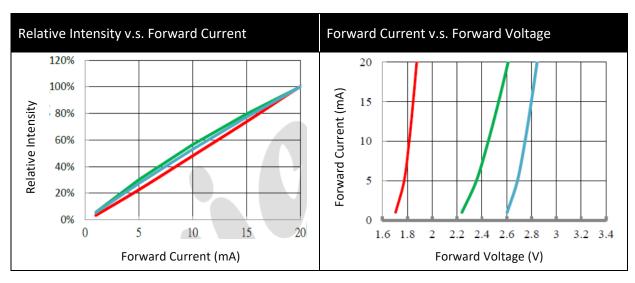


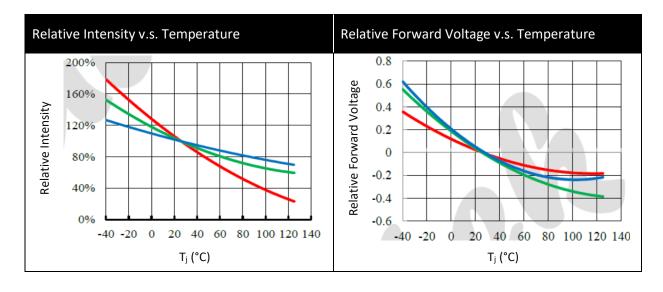
BINNING GROUPS:

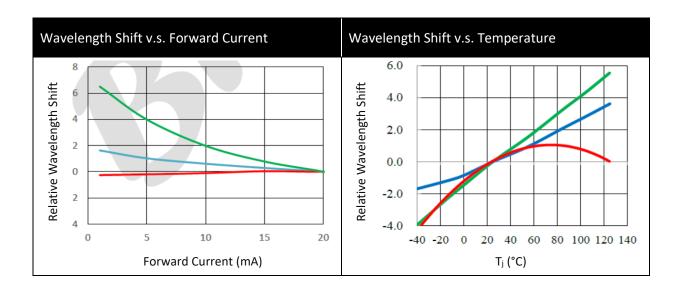
Luminous Intensity Classifications (V_{DD}=5V, I_F=20mA):

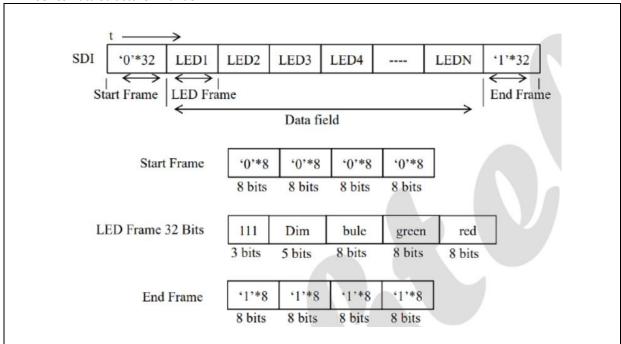
Co	de	Min.	Max.	Unit	
Red	1 22		280	mad	
Red	2	280	350	mcd	
Croon	1	700	850	mcd	
Green	2	850	1050		
Divo	1	120	150	m ad	
Blue	2	150	200	mcd	


Chromaticity Coordinate Classifications (V_{DD}=5V, I_F=20mA):

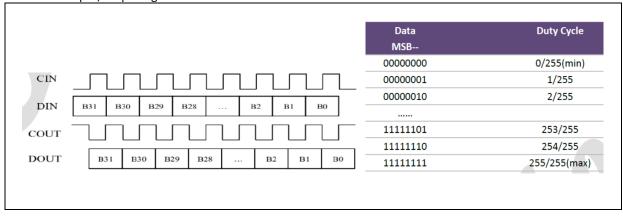



	-	l	2	2	3	3	4	1
	Х	Υ	Х	Υ	Х	Υ	Х	Υ
R30	0.7043	0.2924	0.7079	0.2920	0.7151	0.2848	0.7113	0.2852
G24	0.1676	0.7558	0.1411	0.7510	0.1670	0.6934	0.1866	0.7059
B55	0.1450	0.0313	0.1513	0.0232	0.1552	0.0300	0.1498	0.0391


ELECTRO-OPTICAL CHARACTERISTICS (Full PWM):



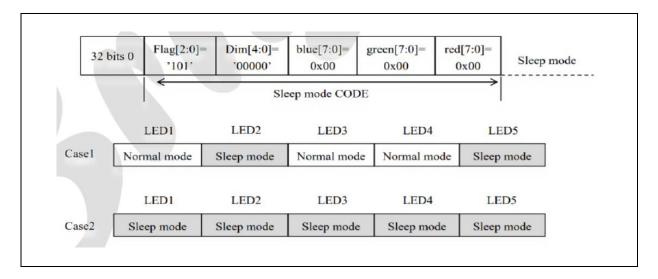
Function Description:


1. Series Data Structure – Tandem N-LED:

2. Dim 5-Bit (level 32) brightness adjustment (simultaneous control of OUTR\OUTG\OUTB three port current):

	Data	Driving Current
MSI	B ←→ LSB	
	00000	0/31
	00001	1/31
	00010	2/31
	11110	30/31
	11111	31/31(max)

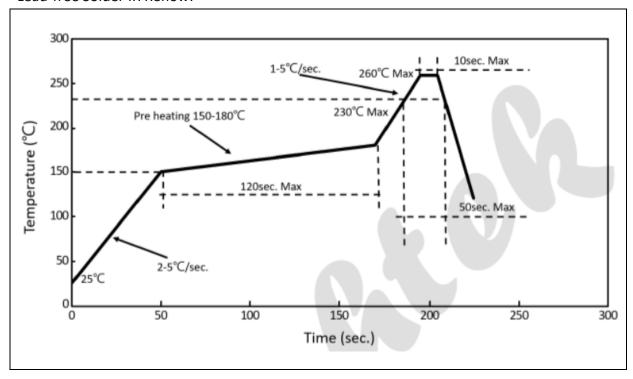
3. PWM input/output signals relations:



4. Sleep and power saving mode:

LED supports the sleep/wake-up modes for power-saving purpose. After the IC receives 24-bitS 0's BGR data (that is B[7:0]=8h00, G[7:0]=8h00, R[7:0]=8h00), in the meantime, both of the data in 3-bits FLAG and 5-bits DIMMING is 8h'A0' (that is FLAG[2:0] =3b101 and DIMMING [4:0] =5b00000), the IC will enter sleep mode, its current is about 1μ A.

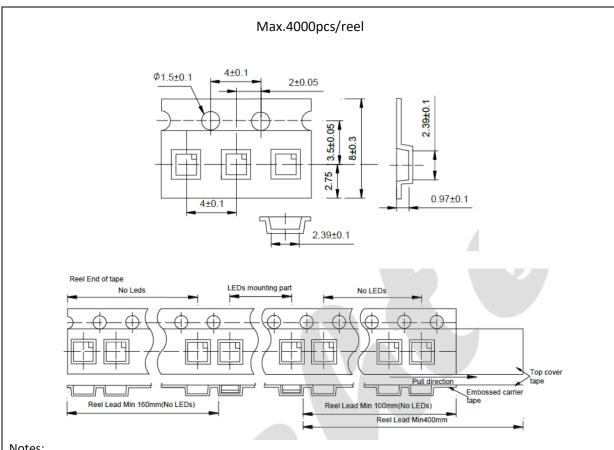
The IC will wake up from sleep mode once receiving the new data with the data of FLAG[2:0], DIMMING[4:0] is not 8h"A0"; after wake-up, all sleeping circuits in IC return to normal working mode within1ms. Since it takes 1ms for a sleeping IC returning to normal function mode, it is recommended for a host to wait for 1ms to send display data and command after issuing a wake-up command.



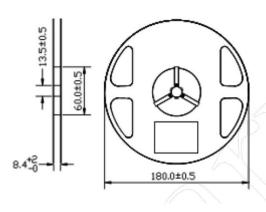
In case 1, while lamp 2 is under sleep mode, in the following data transfer process, the state of lamp 2 will be not changed as long as the 32-bits data for lamp 2 is received with data of FLAG[2:0] and DIMMING[4:0] being 8h"A0". It means lamp 2 will keep in sleep mode as well. In the situation, lamp 2 can pass through the remaining data to lamp 3 (32-bits) to change the display data of lamp 3. In other words, the sleeping chip is able to pass the data to the next chips.

ECOMMENDED SOLDERING PROFILE:

Lead-free Solder IR Reflow:


Note:

- 1. We recommend the reflow temperature 240°C (±5°C). The maximum soldering temperature should be limited to 260°C.
- 2. Maxima reflow soldering: 3 times.
- 3. Before, during, and after soldering, should not apply stress on the components and PCB board.


PACKING SPECIFICATION:

Reel Dimension:

Notes:

- 1. Empty component pockets are sealed with top cover tape.
- 2. The max loss number of SMD is 2pcs.
- 3. The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications.
- 4. The remainder packing in multiples of 500pcs.

PRECAUTIONS OF USE:

Storage:

It is recommended to store the products in the following conditions:

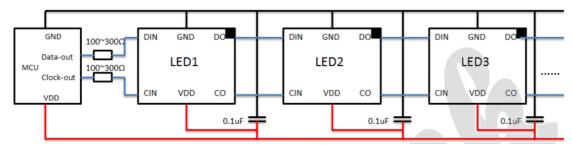
- Humidity: 60% R.H. Max.
- Temperature: 5°C~30°C (41°F ~86°F).

Shelf life in sealed bag: 12 months at 5°C~30°C and <60% R.H.

Once the package is opened, the products should be used within 24 hours. Otherwise, they should be kept in a damp-proof box with descanting agent stored at R.H.<20% and apply baking before use.

Over-Current Proof:

Must apply resistors for protection otherwise slight voltage shift will cause big current change and burnout will happen.


Baking:

It is recommended to bake the LED before soldering if the pack has been unsealed for longer than 24hrs. The suggested baking conditions are as followings:

60±3°C x 6hrs and <5%RH, taped / reel package.

It's normal to see slight color fading of carrier (light yellow) after baking in process.

Testing Circuit:

When the first LED is connected to the MCU, a resistance R is needed in series between its signal input line and the MCU. The size of R depends on the number of cascade beads. The more cascades, the smaller resistance R is used. It is generally recommended that the value be between 100-1K. Usually the recommended value is around 300 R. In order to make the LEDs work more stably, a parallel capacitor is needed between VDD and GND of each.

Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED carrier / package. Avoid putting any stress force directly on to the LED lens.

ESD (Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing the LED all time. All devices, equipment, machinery, work tables, and storage racks must be properly grounded.

REVISION RECORD:

Version	Date	Summary of Revision
A1.0	28/11/2022	Datasheet set-up.
A1.1	11/08/2024	Update automotive qualification.