BRIGHTEK (EUROPE) LIMITED ED ! Brighten Up The World With LED !

PRODUCT DATASHEET

- CHIP SMD with IC
- ▶ 0808 (2020) IC 0.75t
- ► Red/Green/Blue

N0M67S15IC

0808 IC-Integrated compliant

FEATURES:

- Package: CHIP EIA STD Package 6 Pins with Integrated IC
 - Output Current (typ.): 1.875~5.000mA
- LED Voltage: 4.5~5.5V
- Luminous Intensity (typ.): 23/147/16mcd*
- Mixed White Intensity (typ.): 184mcd
- Colour: Red/Green/Blue
- Dominant Wavelength (typ.): 630/535/457nm
- Viewing Angle: 120°
- Materials:
 - Resin: Epoxy (Water Clear)
- **Operating Temperature:** -40~+105°C
- Storage Temperature: -40~+105°C
- IC Feature: Serial data transmission signal by dual-wire DATA & CLK lines. Supports sleep/wake-up mode. In sleep mode, the LED's current was lower than 1µA.
- **Pixel:** One pixel contains R, G, and B colour that each can achieve 256 level brightness grayscales, which forms 16,777,216 combination colours.
- Soldering methods: IR reflow soldering
- MSL Level: acc. to JEDEC Level 3
- Packing: 8mm tape with max.4000pcs/reel, ø180mm (7") * in order of Red/Green/Blue

Copyright $\ensuremath{\mathbb{C}}$ 2007-2024 Brightek (Europe) Limited. All rights reserved. The information in this document is subject to change without notice.

.

•

1

0808 IC Integrated

APPLICATIONS:

- Automotive Interior Light
- Telecommunication
- Status Indicator
- Home Appliance
- Decoration Lighting
- Full Colour LED Strip

Support sleep/wake up mode. In sleep

mode the LED's current was lower than 1µA

CHARACTERISTICS:

Absolute Maximum Characteristics (Ta=25°C)

Parameter	Symbol	Ratings	Unit
IC Power Supply Voltage	V _{DD}	Max. 6.5	V
Rate of Data Signal	Fclk	15	MHz
Max. LED Output Current (DIM 8)*	Іомах	5.419	mA
Power Dissipation	PD	97.5	mW
Junction Temperature	Tj	125	°C
Operating Temperature	Topr	-40~+105	°C
Storage Temperature	T _{STG}	-40~+105	°C
Electrostatic Discharge (HBM) acc. To ANSI/ESDA/JEDEC JS-001	ESD	2000	V
Soldering Temperature	T _{SD}	245 for 10s max.	°C

* The actual current of DIM level, please refer to DIM Current Range table.

Parameter		Currente e l	Values			Test	
		Symbol	Min.	Тур.	Max.	Unit	Condition
LED Voltage		VLED	4.5		5.5	V	
	R		13	23	40		V _{DD} =5V I⊧=1.875mA (DIM 3)
Luminous Intensity	G	١v	125	147	170	mcd	
	В	IV	9	16	30	mcu	
Mixed White	W		125	184	250		
	R			86			
Luminous Flux	G	Φν		473			V _{DD} =5V I⊧=1.875mA (DIM 3)
	В			44			
Mixed White	W			177			
	R		628		633		V _{DD} =5V I⊧=1.875mA
Dominant Wavelength	G	λ_{d}	532		537	nm	
	В		455		460		(DIM 3)
Colour Coordinate	х			0.2264			V _{DD} =5V I _F =1.875mA
Colour Coordinate	Y			0.2378			(DIM 3)
Viewing Angle		2 θ 1/2		120		deg	

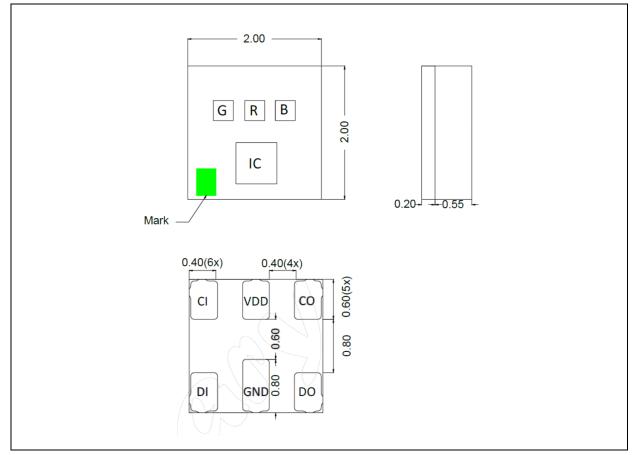
Electrical & Optical Characteristics (Ta=25°C, V_{DD}=5V, I_F=1.875mA (DIM 3))

1. Tolerance of Measure: Luminous Intensity: ±10%mcd, Dominant Wavelength: ±1.0nm, Color Coordinate: ±0.005.

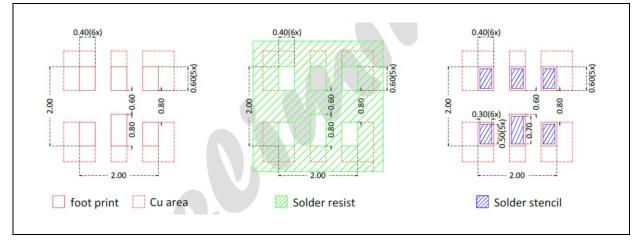
2. Luminous Flux is for reference only.

Electrical Characteristics (Ta=25°C)

Parameter	Symbol Values				Unit	Test	
Farameter	Symbol	Min.	Тур.	Max.	Onit	Condition	
Supply Voltage	V _{DD}	4.5	5.0	5.5	V		
Input High Voltage	VIH	2.7		V _{DD} +0.4	V		
Input Low Voltage	VIL	-0.4		1.0	V		
Clock High Level Width	T _{CLKH}	30			ns		
Clock Low Level Width	Tclkl	30			ns		
Data Setup Time	TSETUP	10			ns		
Data Hold Time	T _{HOLD}	5			ns		
Working Current (IC)	IDD			1.5	mA	I _{out} ="OFF"	
Static Current	I _{Sleep}			1	μΑ	Sleep Mode	

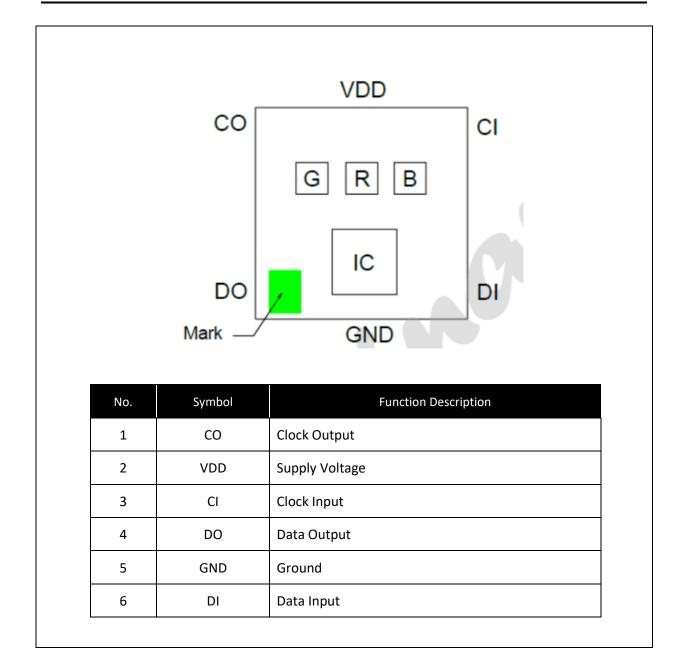

DIM Current Range

Deremeter	Cotting	Symbol		Values		Linit
Parameter	Setting	Symbol	Min.	Тур.	Max.	Unit
	DIM 3		1.839	1.875	2.032	
	DIM 4		2.452	2.500	2.709	
DC Forward Current	DIM 5		3.065	3.125	3.387	
DC Forward Current	DIM 6	IF	3.677	3.750	4.065	mA
	DIM 7		4.290	4.375	4.742	
	DIM 8		4.903	5.000	5.419	


OUTLINE DIMENSION:

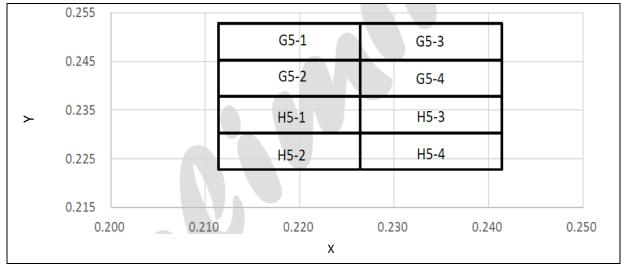
Package Dimension:

- 1. All dimensions are in millimetre (mm).
- 2. Tolerance ±0.1mm, unless otherwise noted.


Recommended Soldering Pad Dimension:

- 1. Dimensions are in millimetre (mm).
- 2. Tolerance ± 0.1 mm with angle tolerance $\pm 0.5^{\circ}$.

PIN CONFIGURATION:

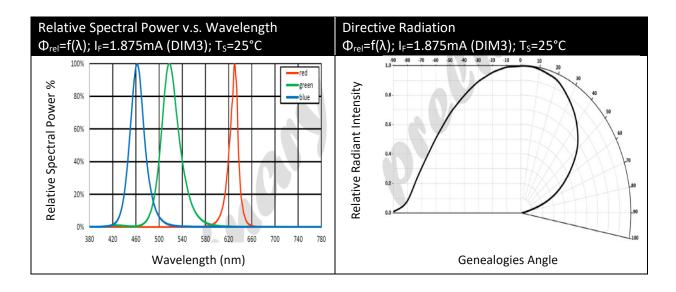


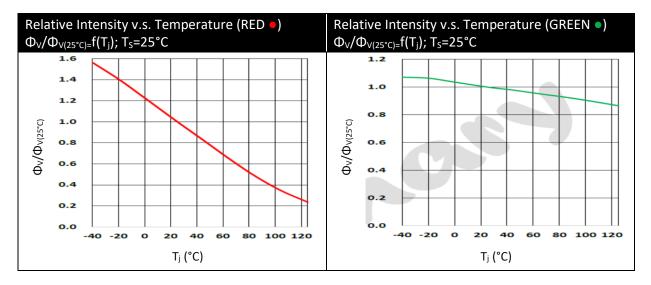
BINNING GROUPS:

Luminous Intensity Classifications (T_a=25°C, V_{DD}=5V, I_F=1.875mA (DIM 3)):

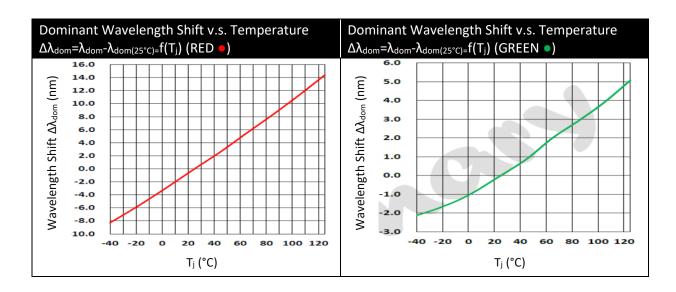
Code		Min.	Max.	Unit
	13	125	160	
Mix White	14	160	200	mcd
	15	200	250	

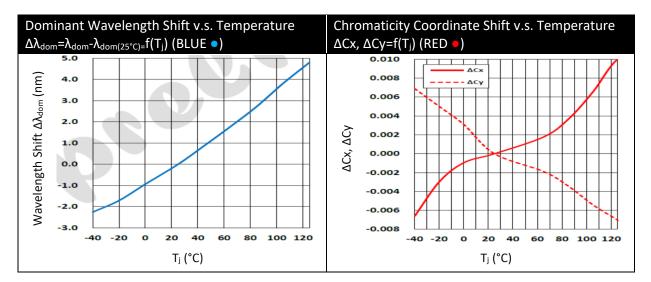
Chromaticity Coordinate Classifications (T_a=25°C, V_{DD}=5V, I_F=1.875mA (DIM 3)):

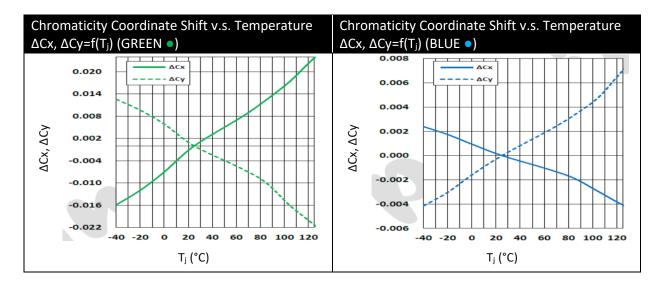


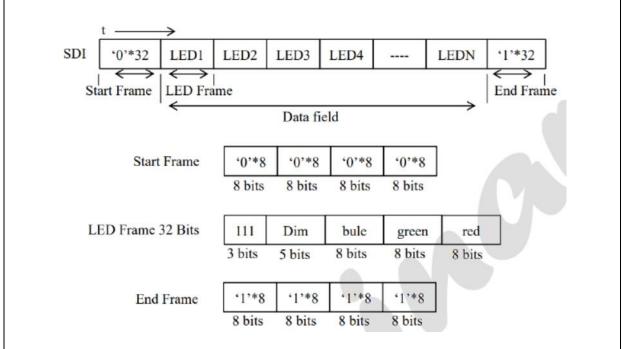

	-	L	2		3		4	
	Х	Y	Х	Y	Х	Y	Х	Y
G5-1	0.2114	0.2528	0.2114	0.2453	0.2264	0.2453	0.226	0.2528
G5-2	0.2114	0.2453	0.2114	0.2378	0.2264	0.2378	0.2264	0.2453
G5-3	0.2264	0.2528	0.2264	0.2453	0.2414	0.2453	0.2414	0.2528
G5-4	0.2264	0.2453	0.2264	0.2378	0.2414	0.2378	0.2414	0.2453
H5-1	0.2114	0.2378	0.2114	0.2303	0.2264	0.2303	0.2264	0.2378
H5-2	0.2114	0.2303	0.2114	0.2228	0.2264	0.2228	0.2264	0.2303
H5-3	0.2264	0.2378	0.2264	0.2303	0.2414	0.2303	0.2414	0.2378
H5-4	0.2264	0.2303	0.2264	0.2228	0.2414	0.2228	0.2414	0.2303

1. Tolerance of X/Y ± 0.005 .

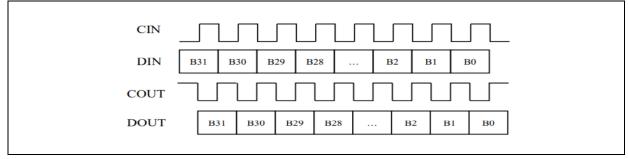

ELECTRO-OPTICAL CHARACTERISTICS (Full PWM):







Function Description:

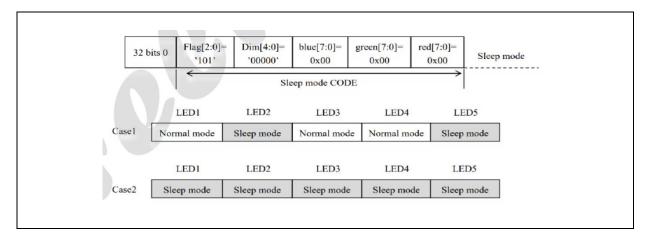

1. Series data structure – Tandem N-LED:

2. 5-Bit brightness adjustment and specification limits:

DIM 5-Bit (level 32) brightness adjustment involves simultaneous control of OUTR\OUTG\OUTB three port currents. DIM=8 serves as the recommended upper limit for this specification, while DIM=3 represents the testing condition for photoelectric parameters within this specification.

Data MSB←→LSB	Driving Current
00000	0/31
00001	1/31
00010	2/31
11110	30/31
11111	31/31(max)

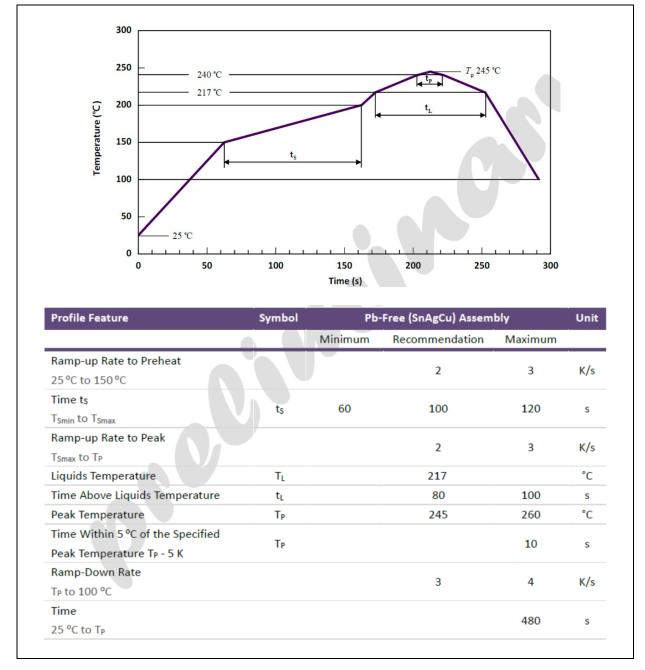
3. PWM input/output signals relations:



4. Sleep and power saving mode:

Data	Duty Curls
MSB	Duty Cycle
0000000	0/255(min)
0000001	1/255
0000010	2/255
1111101	253/255
1111110	254/255
1111111	255/255(max)

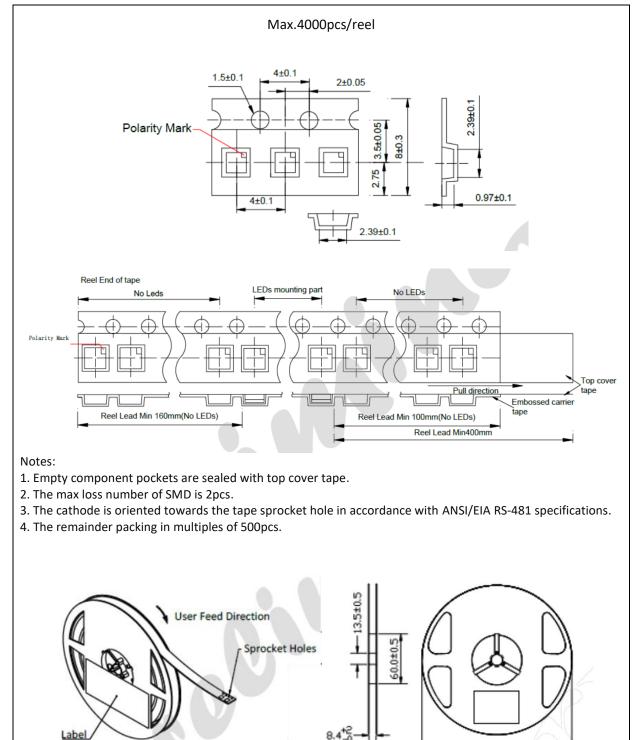
The LED supports sleep/wake-up modes for power-saving purposes. Upon receiving 24 bits of '0's in BGR data (where B[7:0]=8h00, G[7:0]=8h00, R[7:0]=8h00), concurrently, both the 3-bit FLAG and the 5-bit DIMMING are set to 8h"A0" (indicating FLAG[2:0]=3b101 and DIMMING[4:0]=5b00000), the IC will enter sleep mode with a current of approximately 1uA. The IC will awaken from sleep mode upon receiving new data where FLAG[2:0] and DIMMING[4:0] are not 8h"A0". Following the wake-up, all sleeping circuits within the IC return to normal operating mode within 1ms. Considering the 1ms required for the IC to transition from sleep to normal function, it is recommended for the host to wait 1ms after issuing a wake-up command before sending display data and commands.



In Case 1, if LED 2 is in sleep mode, during the subsequent data transfer process, the state of LED 2 will remain unchanged as long as 32 bits of data for LED 2 is received with FLAG[2:0], DIMMING[4:0] set as 8h"A0". This indicates that LED 2 will remain in sleep mode. In this scenario, LED 2 can relay the remaining 32 bits of data to LED 3 to modify the display data of LED 3. In essence, the inactive chip (LED 2 in sleep mode) has the capability to relay data to the subsequent chips.

ECOMMENDED SOLDERING PROFILE:

Lead-free Solder IR Reflow:


Note:

- 1. We recommend the reflow temperature 240°C (±5°C). The maximum soldering temperature should be limited to 245°C.
- 2. Maxima reflow soldering: 2 times.
- 3. Before, during, and after soldering, should not apply stress on the components and PCB board.

PACKING SPECIFICATION:

Reel Dimension:

180.0±0.5

PRECAUTIONS OF USE:

Storage:

It is recommended to store the products in the following conditions:

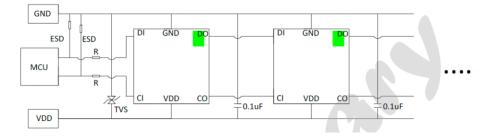
- Humidity: 60% R.H. Max.
- Temperature: 5°C~30°C (41°F ~86°F).

Shelf life in sealed bag: 12 months at 5°C~30°C and <60% R.H.

Once the package is opened, the products should be used within 1 week. Otherwise, they should be kept in a damp-proof box with descanting agent stored at R.H.<20% and apply baking before use.

Over-Current Proof:

Must apply resistors for protection otherwise slight voltage shift will cause big current change and burnout will happen.


Baking:

It is recommended to bake the LED before soldering if the pack has been unsealed for longer than 24hrs. The suggested baking conditions are as followings:

60±3°C x 6hrs and <5%RH, taped / reel package.

It's normal to see slight color fading of carrier (light yellow) after baking in process.

Typical Application Circuit:

Circuit description:

- 1. A bypass capacitor should be connected in parallel between VDD and GND of each bead. It is recommended to use the 104 capacitor.
- 2. Connected between the first LED bead and the MCU signal line is a 100Ω to 300Ω resistor, reducing surge voltage impact from the MCU output signal. Alternatively, it can be replaced with a magnetic bead to improve interference resistance.
- 3. Add a TVS diode at the power input position of the LED module. Its breakdown voltage should be between 5.5-7.0V, with a clamping voltage below 6.5V, to avoid damage from high voltage surges to the LEDs.
- 4. Each iCLed's DIN and CIN connect to an ESD diode, grounding it to reduce EMC interference. The clamping voltage of the ESD diode is controlled to about 5.5V.

ESD (Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing the LED all time. All devices, equipment, machinery, work tables, and storage racks must be properly grounded.

REVISION RECORD:

Version	Date	Summary of Revision
A1.0	24/11/2023	Datasheet set-up.
A1.1	11/08/2024	Update automotive qualification.